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A (Historical) Review of the
Six-Port Measurement Technique
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Abstract—The six-port measurement technique has found wide
acceptance and has played a major role in microwave metrol-
ogy, particularly in national standards laboratories. This paper
reviews the development of this technology and includes some
historical background.

Index Terms—Automatic network analyzer, microwave mea-
surements, microwave metrology, six-port, vector automatic net-
work analyzer.

I. BACKGROUND

T HE FIELD OF microwave metrology differs from its
lower frequency counterpart in that a uniform transmis-

sion line or waveguide is required in order that the fields
therein may be described as a pair of well-defined traveling
waves (in the forward and reverse directions) and whose
complexamplitudes will be denoted by and . These wave
amplitudes provide the basis for microwave circuit theory and
their measurement is a major objective of microwave metrol-
ogy. Unfortunately, any attempt to observe these waves (e.g.,
via probes, etc.) at the position of interest also violates the
uniformity requirement. Instead, one infers these amplitudes at
the “test port” or terminal surface from observations at other
locations.

This may be illustrated as in Fig. 1, which includes a source,
which is connected to the multiport junction, a test port (#2),
and detectors at the one or more remaining ports. The operation
is governed by one or more equations of the form

(1)

where is the complex signal provided to the sensing device,
are the complex wave amplitudes at the terminal of

interest, and are parameters which characterize the
measuring instrument. In an environment where the sensing
device responds only to power, one has

(2)

From the perspective of a microwave metrologist, it is
possible to recognize at least three different eras in the
evolution of the art. Much of the early development was, of
course, an outgrowth of the technology developed during the
second World War. In its aftermath, volume 11 of the Radiation
Laboratory Series [1] was a major reference work. This era was
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Fig. 1. Microwave metrology is characterized by the use of detectors which
are “remote” from the terminal surface of interest.

characterized by a heavy dependence upon simple detection
schemes using detectors of the diode or bolometric type. Dur-
ing this time the “key” to improved accuracy was frequently
an improved item of hardware. (For example, an improved
probe transport mechanism for a standing wave machine, or
a directional coupler of improved directivity.) In terms of (1),
a standing wave machine is a device for which
while the phase difference is adjustable via the probe position.
For the ideal directional coupler, eitheror would vanish.
In order to support this requirement, an instrument shop and
a highly trained staff of instrument makers accompanied the
National Bureau of Standards (NBS) Microwave Metrology
Section when it was moved from Washington, DC, to Boulder,
CO, in 1954.

The second era was characterized by the substitution of
the directional coupler and “reflectometer” for the standing
wave machine. Moreover, by the incorporation of “tuning
transformers” therein, it was possible makein situ adjust-
ments of their parameters ( or ) and thus
obtain improved directivity, etc. In time this became a highly
developed technology and served the art rather well for a
decade or more. On the other hand, these methods were both
frequency sensitive and time consuming. With the advent
of the digital computer, which made possible the (vector)
automated network analyzer (VANA), these methods were
headed for obsolescence, and the third era was introduced.

II. I NTRODUCTION

In today’s world the VANA can accomplish in seconds, if
not milliseconds, measurement results which formerly would
have required a day or more. In addition to the speed and
operator convenience, however, a major shift in “measurement
strategy” is associated therewith. In particular, the “require-
ment” for reduced mechanical tolerances in the hardware, or
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time-consuming tuning adjustments, the techniques includean
explicit recognition (or modeling) of the hardware imperfec-
tions and their“elimination” by the software.

A key element in the implementation of this new strategy
was a detection system which responded to thephaseas well
as amplitude of the detected signals. Returning to Fig. 1, a
second detector is added whose operation may be described
by

(3)

Given this response, and the parameters , one has a
system which may be solved for and . (As a practical
matter, the primary interest is usually in the ratio ,
for which only , , , and are required.)
These may be determined by a “calibration procedure” which
typically requires a set of “known” terminations, or perhaps a
length of transmission line, and the VANA response thereto.

Although the major portion of the six-port development has
taken place in the last of these eras, this historical review
would not be complete without acknowledging some of the
earlier work. Of note is a paper by Samuel [2] who described
an “oscillographic” method of presenting impedance. Although
the term had not been coined at that time, his “six-port” took
the form of a length of waveguide with four probes inserted
therein. Because the appropriate probe spacing was frequency
dependent, this was a narrow-band technique. In addition,
Samuel’s paper recognized the potential application of direc-
tional couplers to this problem. This work was followed some
decades later by that of Cohn [3] and Hoer [4], who described
systems along these lines. Although these provided improved
bandwidth, the resultant accuracy was still restricted by the
deviations of the hardware from its design objectives.

Perhaps the defining moment in the emergence of the six-
port technology as it exists today was the recognition that an
explicit correction could be made for these deviations in a six-
port network while retaining the simple amplitude detection
methods [5], [6]. This was in marked contrast to the VANA
systems, then under development within the industry, which
required heterodyne detection and its associated frequency
conversion, local oscillators, etc.

The operation of the six-port may be defined by the system
of equations

(4)

(5)

(6)

(7)

where are the sidearm responses, and are,
respectively, the emergent and incident wave amplitudes at the
test port, and are the six-port network parameters.

Expanding (4), one has

(8)

while similar expansions of (5)–(7) are also possible. By
inspection, (8) is “linear” in , , , and ,
thus the solution of (4)–(7) for these “unknowns” is linear in

. Moreover, thedifferencebetween and ,
which is equal to the net power ( ) at the test port, will
also be linear in . The reflection coefficient may
be written

(9)

so that this may be obtained as well.
This elementary theory, however, did not account for cer-

tain redundancies. In particular, one hasfour observations in
(4)–(7) from which to determine and thecomplex . In
time it was demonstrated that the four power meter readings
are connected by a quadratic equation such that three of them
determine the fourth to the extent of a choice between two
possible values. This made it possible to both improve and
assess the measurement accuracy, and it led to simplified
calibration procedures (i.e., a determination of the parameters
which characterize the six-port).

III. GENERAL THEORY

Although the details of the more general solution to (4)–(7)
are beyond the scope of this paper, a general outline is as
follows. For initial convenience it is assumed that, in keeping
with the usual design objectives, . Then (4) and (5)
may be combined to obtain

(10)

where . By hypothesis , , and are known,
and is observed so that lies on a circle with center
at and radius as given by the right-hand side of (10). In a
similar way, (6) and (7) may be combined with (5) to obtain
two additional circles whose centers will be denoted by
and . The solution may be thus indicated graphically, as in
Fig. 2. In the general case, where , the circle centers
as well as the radii are functions of the power meter readings.
This geometric picture has provided a substantial amount of
intuitive insight into the six-port operation [7]. In particular,
two of the circles determine the radius of the third to the extent
of a choice between two possible values. Thus, and as noted
earlier, there is a quadratic relationship among the. To be
more explicit, the ratios , , and lie on a
paraboloid surface in a three-dimensional “-space.”

The analytic solution may be simplified by introducing a
two-step procedure in which the first objective is to determine
thecomplexratio , which will be denoted by . Follow-
ing this, conventional four-port reflectometer theory [8] may
be used. (In six-port parlance, this initial step is known as a
six-to-four-port reduction.) Starting with (1) and (3), one can
solve for and then substitute in (6) and (7). This leads to

(11)

(12)

and

(13)

where , , , and are functions of . Again the
solution, which is now “exact,” is given by the intersection
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Fig. 2. The reflection coefficient is determined from the intersection of three
circles.

Fig. 3. The “intersection failure” is an indicator of power meter error.

of three circles centered at the origin and . Moreover,
since only phasedifferencesare involved, it is both possible
and convenient to assume that is real. In practice, because
of measurement error in the , the circles will not intersect
in a point. The situation is thus as given in Fig. 3, where
the “intersection failure” is an indication of the power meter
error and provides a useful performance monitor [9], [10].
With reference to the “linear” solution, which was introduced
in an earlier paragraph, it can be shown that this yields the
intersection of the common chords, or “radical center,” as
shown in Fig. 3. As noted above, oncehas been determined,
the problem reduces to conventional four-port reflectometer
theory in which is related to by a linear fractional
transform.

IV. DUAL SIX-PORT

In order to measure two-port devices, thedual six-port was
developed [11]. As shown in Fig. 4, this is implemented by
a pair of six-ports which are fed from a common source and
dividing network. The latter includes a provision for adjusting
the phase difference between the signal inputs to the two six-
ports. In operation, the “reflection coefficient” as observed
by six-port 1, at terminal 1, is augmented by the signal
which is fed through the device under test (DUT) via six-port
2. This measurement is repeated for several different phase
differences, which makes it possible to distinguish between
the transmitted signal and the actual reflection from the DUT.

Fig. 4. The dual six-port.

Fig. 5. A typical six-port circuit.

For a 40-dB attenuator, the transmitted signal is of the same
amplitude as that provided by a reflection from the DUT of
0.01. The dynamic range in an attenuation measurement is thus
limited by the resolution of the power detectors in use rather
than their dynamic range. For these reasons, the detectors of
choice are of the bolometric type, although extensive use has
also been made of diode types in less demanding applications.

V. CALIBRATION METHODS

The calibration requires the determination of two sets of
parameters: those associated with the six-to-four-port reduc-
tion, and the three complex ones which characterize the

to transform. As noted above, there is a quadratic
relationship among the , which is characterized by five
parameters, from which one may obtain the, , , and

. These parameters may be determined by observing the
system response to a collection of terminations, but whose
values need not be known except as required to obtain a well-
conditioned solution. The parameters which characterize the

to transform may be obtained by any of the existing
techniques for a four-port reflectometer. For the dual six-
port, the “thru-reflect-line” (TRL) [12] and its variants are
convenient.

VI. SIX-PORT CIRCUITS

The design for the six-port network revolves primarily
around the choice of positions for the circle centers. From sym-
metry, these should be equidistant from the origin and spaced
at 120 . The optimal distance from the origin is problematic,
but a value of 1.5 is satisfactory in most applications. The
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Fig. 6. Six-port circuit based on the use of a symmetric five-port.

Fig. 7. The multistate reflectometer is a variant of the six-port.

six-port may be assembled from quadrature (Q) and divider
(D) hybrids, and the circuit shown in Fig. 5 is typical. In
reality, this is a seven-port, and if the meter is replaced
by a termination, the spacing for the circle centers is 90, 90 ,
and 180. Somewhat better spacing (90, 135 , and 135) may
be achieved via an alternative circuit which uses fewer hybrids
[13]. Another circuit is shown in Fig. 6 [14].

An interesting variant of the six-port is provided by the
“multistate reflectometer,” the circuit for which is shown in
Fig. 7. Here there are only two detectors, but is observed
for three or more positions of the sliding short. For additional
details the reader is referred to the original paper [15].
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